Critical sets in back circulant Latin rectangles

نویسندگان

  • Ebadollah S. Mahmoodian
  • G. H. John van Rees
چکیده

A latin rectangle is an m × n array, m ≤ n, from the numbers 1, 2, . . . , n such that each of these numbers occur in each row and in each column at most once. A critical set in an m×n array is a set S of given entries, such that there exists a unique extension of S to a latin rectangle of size m×n. If we index the rows and columns of an m×n array, m ≤ n, by the sets M = {1, 2, . . . ,m} and N = {1, 2, . . . , n}, respectively, then the array with integer i+j−1 (mod n) in the position (i, j) is said to be a back circulant latin rectangle. We show that the size of smallest critical set in a back circulant latin rectangle of size m× n, with 4m ≤ 3n is equal to m(n−m) + b(m− 1)2/4c.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defining sets in vertex colorings of graphs and latin rectangles

In a given graph G, a set of vertices S with an assignment of colors is said to be a defining set o f the vertex coloring o f G, if there exists a unique extension of the colors of S to a z(G)coloring of the vertices of G. The concept of a defining set has been studied, to some extent, for block designs and also under another name, a critical set, for latin squares. In this note we extend this ...

متن کامل

Minimal critical sets for some small Latin squares

A general algorithm for finding a minimal critical set for any latin square is presented. By implementing this algorithm, minimal critical sets for all the latin squares of order six have been found. In addition, this algorithm is used to prove that the size of the minimal critical set for a back circulant latin square of order seven is twelve, and for order nine is twenty. These results provid...

متن کامل

On the spectrum of critical sets in latin squares of order 2

Suppose that L is a latin square of order m and P ⊆ L is a partial latin square. If L is the only latin square of order m which contains P , and no proper subset of P has this property, then P is a critical set of L. The critical set spectrum problem is to determine, for a given m, the set of integers t for which there exists a latin square of order m with a critical set of size t. We outline a...

متن کامل

Minimal and near-minimal critical sets in back-circulant latin squares

A critical set in a latin square is a subset of its elements with the following properties: 1) No other latin square exists which also contains that subset. 2) No element may be deleted without destroying property 1. Let scs(n) denote the smallest possible cardinality of a critical set in an n × n latin square. It is conjectured that scs(n) = n/4 , and that only the back-circulant latin square ...

متن کامل

On the forced matching numbers of bipartite graphs

Let G be a graph that admits a perfect matching. A forcing set for a perfect matching M of G is a subset S of M , such that S is contained in no other perfect matching of G. This notion has arisen in the study of .nding resonance structures of a given molecule in chemistry. Similar concepts have been studied for block designs and graph colorings under the name de/ning set, and for Latin squares...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1997